The Q1 Assembler

Preliminary Edition

Table of Contents

Page Contents
1 Q1 PROCESSOR
3 Control and Timing Unit
Arithmetic and Logic Unit
4 General Purpose Registers
Memory
Program Counter and Stack Pointer
5 Input/Output Control Unit
7 Q1 ASSEMBLER
9 Introduction
11 Assembly Language Coding Conventions
14 Assembler Pseudo Operations
15 Directives
16 Other Pseudo Operations
19 Machine Instructions
LOAD Instructions
22 STORE Instruction
24 Stack Instruction
26 Arithmetic Instructions
32 SHIFT Instructions
33 Unconditional Branch Instructions
35 Conditional Branch Instructions
37 Logical Instructions
42 Miscellaneous Instructions
46 Interrupt Instructions
47 Input/Output Devices
Keyboard
49 Display
51 Printer
52 The Disk Unit
54 Programmable Timer
56 Communications Interface Unit

63

Instruction Set

Q1 Progcessor

Six main components form the general structure of the Q1 Proces-
sor. The relationship of the components is illustrated in Figurce
The components are as follows:

[Control and Timing Unit

Arithmetic and Logic Unit

General Purpose Registers

Memory

Program Counter and Stack Pointer

A T

Input/Output Control Unit

The main functions of these six components are summarized by
the following descriptions.

Control and Timing Unit

The Control and Timing Unit accepts an instruction and stores the
first byte (8 bits) of the instruction into an 8-bit register, called
the Instruction Register (I-register). The operation code of the in-
struction is decoded, and the proper data paths for the other pro-
cessor components are sclected.

At¢ithmetic and Logic Unit

The Arithmetic and Logic Unit (ALU) performs all arithmetic and
logical functions for the processor. When any of the available arith-
metic, logical or shift instructions are used, the ALU is under con-
trol of a program.

Five Condition Code Flags are also controlled by the ALU. These
are two Carry Flags, a Minus Flag, a Zero Flag, and an Even Parity
Flag. The condition of one or more of these flags is tested or set
by the ALU during execution of arithmetic, logical and shift instruc-
tions. A variety of branching instructions also are available by
which a program may test the condition of cach flag. With cach
such instruction, the ALU participates in the operation.

General Purpose Registers

Seven 8-bit registers are available for general programming purposes.
The registers are identified by the letters A, B, C, D, E, H, L.
Register A serves not only as a general purpose register, but also .
as the Accumulator for arithmetic, logical and shift operations, and
as an input/output unit register.

Memory

Processor semiconductor memory is available in increments to a
maximum of 65,536 directly addressable bytes. This memory may
be obtained as read/write random access memory (RAM) or as a
combination of RAM memory and non-volatile read only memory
(ROM).

The first 1K of memory is normally ROM and is used for loading
and initializing purposes.

Program Counter and Stack Pointer

The Program Counter (P-register) points to the instruction currently
being executed by containing the address of that instruction.
During instruction execution, the address in the Program Counter
is incremented by 1 as the contents of each instruction byte anre
sent by the Timing and Control Unit to its appropriate destination.
The Program Counter is incremented one, two or three times, de-
pending upon the number of bytes in the instruction.

The Address Stack is located in memory and is used to store re-
turn addresses from subroutines. A 16-bit counter, which is called
the Stack Pointer, points to the location of the next return address.
The stack can also be used to save the registers and the condition
codes.

Input/Output Control Unit

The Input/Output Control Unit (ICU) controls the flow of all in
formation between the processor and the input and output units
(such as a printer, display, keyboard, disk unit, programmable timer
communications). A maximum of 32 devices may be connected
to the processor through the ICU. All devices may be under con-
trol of the Interrupt System.

»

sl

Q1 Assembler

Introduction

The minimum machine configuration for the Q1 Assembler consists
of 8K CPU, the keyboard, a Disk unit, the nrinter, and the display.

A source program can be written by using the Editor. The source
program is written on the disk as ASCII file. In order to assemble
the program, enter the following command: ASM NAME1 NAME?2
and press the RETURN button. NAMET is the file containing the
source code and NAME2 is the file where the object code is to be
put.

Since the computer will not operate using mnemonic codes and
addresses, these must be translated to absolute codes and absolute
addresses. This translation is done by the assembler. The assem-
bler reads the program, translates the mnemonic operation codes

to hexadecimal operation codes, and assigns memory locations for
storing instructions and data. The assembler then generates a block
of absolute code which is written as a binary file. The translation
from symbolic code is generally one-for-one: one symbolic instruc-
tion results in one instruction in absolute code. The assembler
keeps track of all memory locations. Once a memory location is
assigned to a particular symbolic address, the same memory loca-
tion will be assigned to all subsequent uses of the associated sym-
bolic name. The translation process includes error diagnostics to
detect certain types of coding errors.

The assembler makes two passes over the source code. The first
pass generates a symbol table from the labels in the source code
and checks for certain error conditions, primarily in syntax and
form. The diagnostics will be a one-letter flag, a space, and the
faulty line.

These one-letter flags are:

U Undefined symbol
M Multiply defined symbol
(0] Op code error

10 —

w Weird error
S Memory overflow
F File overflow

The second pass generates the object code.

By making two passes over the source code, the assembler is able
to provide ‘““forward referencing,” i.e., it can reference a symbol
that occurs later in the program. The first pass determines the def-
initions of all the symbols, and the second pass produces the object
code, so that forward referencing can be accommodated.

In order to get a symbol table and program listing printed, enter
the command: ASM,L. NAME1 NAME2. In order to get the error
messages only, enter: ASM,N NAME1 NAME2. In order to get
the error messages and symbol table only, enter the command:
ASM NAMET NAME2.

Conventions Used in Instruction Description

Condition Code Flags: C = Carry, M = Minus, E = Even, Z = Zero.
There is a second Carry flag, C1, which is used by the Decimal Adjust
Accumulator—DAA.

u = Flag unaffected by instruction
= Flag affected by instruction
0 = Flag value is zero as a result of instruction

An understanding of the general organization of the Q1 processor
is assumed on the part of the reader of this section. Additionally,
sufficient programming experience with assembly languages to be
familiar with the basic terms and concepts is assumed.

Numbers mentioned in this section are hexadecimal numbers unless
otherwise subscripted, i.e., FF is a hexadecimal number; 25510 is a
decimal number. The computer, however, operates using binary
numbers. Hexadecimal notation is chosen for facility of reading
and writing programs, computer inputs and computer outputs.

Assembly Language Coding Conventions

The following coding conventions should be observed when prepar-
ing programs to be assembled by the QT assembler.

1. The basic elements of a line of coding are a label, an opera-
tion code, an operand, and program comments, not all of
which need to be present on cach line. The general conven-
tions which apply to these elements are the following:

1.1 Elements of a line are separated from one another by
at least one space.

1.2 An instruction may not be continued from line to line.

1.3 Instructions, including comments, should not extend
beyond column 63.

1.4 Intervening spaces may not be present in an expression.

1.5 Registers may be designated by the letters A, B, C, D,
E, H, L. (M may be used to designate the contents of
the address in H and L.)

2. Labels, sometimes called ‘““‘names” or “tags” of instructions
(including pseudo instructions) begin in the leftmost position
of the coding line. Labels consist of one or more alphanu-
meric characters, the first of which is alphabetic. Labels may
not contain special characters. They may be of indefinite
length, so long as conventions 1.2 and 1.3 above are observed.

3. Operation codes consist of the capital letters, commas, and
register designations described by the instruction mnemonics
in the instruction section. Spaces may be substituted for
commas in operation codes unless otherwise noted under the
instruction description. Operation codes may begin in any
column except column 1 if the instruction has no label.

4, Operands consist of the expressions described in the instruc-
tion section as operands, and, where appropriate, may be
varied through the use of the following symbols:

—12 —

4.1

4.2

4.3

%

The byte displacement symbol signals the assembler to
shift right by one byte the designated two-byte value.
The effect is that the high-order byte of a two-byte
value, such as an address, is accessed at program execu-
tion time, i.c.:

LILH BUFFER%

The high-order portion of the two-byte address of
a location named BUFFER is loaded into register
H.

Al TABLE%
The high-order portion of the two-byte address of
TABLE is added to the accumulator.

+

The address arithmetic operator signals the assembler to
add the hexadecimal value to the right of the plus sym-
bol to the designated address. The address increment

may be within the range of —8000 to +7FFF. Examples
are as follows:

) PROCESS+3 '
A jump occurs to a location which is 3 bytes
greater than the address of PROCESS.

J PROCESS+0FF80
A jump occurs to a location at PROCESS=101¢.
(FF80 is the two's complement of -1016.)

Arithmetic and Logic Operators

Add

Subtract

Multiply

And each bit of the two operands

Or each bit of the two operands

Complement cach bit of the preceding expression
Result is all ones if greater, zeros otherwise
Result is all ones if less, zeros otherwise

Result is all ones if equal, zeros otherwise

+

T x|

A v

4.4

4.5

4.6

0

Hexadecimal values are designated by a leading zero.
Values of 9 or less may be coded without a leading
zero. For example:

OFF

The decimal value 255 has the hexadecimal equi-

valent of FF.

010

The decimal value 16 has the hexadecimal equiva-

lent of 10.

9

The decimal value 9 has the hexadecimal equiva-

lent of 9. No leading ze¢ro is required.

ASCII values are designated by enclosing the ASCII char-
acters in double quotation marks. All ASCII characters,
including spaces, may be enclosed within the quotation
marks with the following exception: the ASCII sym-
bol for quotation marks may not appear among the
enclosed characters. Instead, quotation marks may be
represented by the equivalent hexadecomal code 221g.
Examples are:

CON “FORWARDING ADDRESS IS:”

CON “100 MAIN STREET”

CON “The quotation reads,” 022, “veni, vidi,
vici.”, 022

LI,1 K

*

The asterisk may be used to designate substitution of
the contents of the program counter (a 16-bit address)
for an address which is used as the operand of an in-
struction. Examples of this are:

—14 —

SET *+0100

This pseudo instruction results in an area which is
256 bytes long being reserved by the assembler.

) * :
This instruction jumps to itself, resulting in an in-
definite loop.

4.7 Multiple operands should be separated by a comma
without intervening spaces, i.e.:

CON OF,0E,0D,0C,0B,0A,“151413121110”

5. Numbers are 16-bit unsigned integers. A symbol will be in-
terpreted as a hex number if it begins with 0, or as a decimal
number if it begins with another digit.

6. A comment may occupy a line by itself if preceded by the
number symbol (#) in column 1.

7. 16-bit constants are stored in memory with the least signifi-
cant byte first, although they are written most significant
byte first in an assembly language program.

Assembler Pseudo Operations

Pseudo operations are statements which are recognized by the as-
sembler as valid instructions, but which are not actually machine
instructions. When encountered by the assembler, the results of
the desired operation or the hexadecimal machine instructions nec-
essary to obtain the desired results are incorporated into the pro-
gram being assembled at each point where the pseudo op has been
included. Pseudo ops are provided to save the programmer from
tedious or error-prone tasks and, occasionally, to supply otherwise
unavailable information to the assembled program.

15—

DIRECTIVES

Directives are pseudo operations that direct the assembler to pro-
duce certain desired results, but which produce no hexadecimal
machine instructions.

SET PROGRAM COUNTER — SET
Actual address or symbolic label

The SET PROGRAM COUNTER directive is a pseudo operation
that causes the program counter to be set to the address specified
by the operand. The address may be specified as an actual hexa-
decimal location or as the symbolic label if used 1t may refer only
to a label that precedes the SET directive in the program.

The SET directive occupies no space in the assembled objective
program and does not increase processing time. It has no effect
upon the settings of the conditional flags.

Examples:
Mnemonic Operand
SET 03ES8

Sets program counter to hex location 03E8. Subsequent
instructions are assembled at locations 03E9, 03EA, etc.

SET START
Program counter is set to address of previously programmed
label, START.

END OF PROGRAM — END
No operand or actual address or symbolic label

The END OF PROGRAM directive signals the assembler that the
previous instruction was the last instruction in the program. If no
operand is provided, the assembler stops at the end of the assembly
process. If an operand is provided, control is transferred to the
location specified by the operand following the loading of the as-
sembled program. The directive occupies no space at the end of
the assembled object program. Instead, the address of the location,
if specified, is stored in memory location 0001 and 0002 by the

16

assembler.

Examples:
Mnemonic Operand
END none

Signals assembler that no more program instructions remain to
be assembled.

END START
Jumps to location of START following loading process.
END 03E8

Jumps to location 03E8 following loading process.

EQUATE — EQU

Actual address or symbolic label

The EQUATE directive assigns the address specified by the operand
to the label appearing at the left of the EQU directive. The oper-
and may be an actual address or a symbolic label associated else-
where in the program with a location.

Examples:
* Label Mnemonic Operand
SSNO EQU EMPID

If SSNO is assembled at location 03ES, the name, EMPID,
may also be used to refer to location 03ES.

DATA EQU 0318
The location 03E8 may be referred to by the symbolic name,
DATA.

OTHER PSEUDO OPERATIONS

The remaining pseudo operations result in the generation of program
constants or assembled instructions. Since these pseudo operations
accomplish more than merely directing the assembl. they are not
referred to as directives.

—17 .

DEFINE CONSTANT — CON
cl,c2,c3,c4,c5,. . .cn

The CON pseudo operation allows one or more bytes of constants
to be defined each time a CON pseudo op is used. Fach byte may
have a value from 00 to FF or, in other words, may contain any
possible combination of bit values. The CON pseudo op may be
labeled, in which case the label refers to the location of the first
constant byte.

The CON pseudo op itself occupies no space in the assembled ob-
ject program. Each constant, however, occupies one byte. The
operation does not increase program execution time after the pro-
gram is loaded.

Examples:
Mnemonic Operand
CON 3,0E8
Defines in the program two one-byte constants.
CON 04D,041,

052,059
Defines in the program four one-byte constants which could
be used to print or display name “MARY.”

CON “MARY”
Same as above.

DEFINE ADDRESS CONSTANT — ADCON
Symbolic label or actual address

The DEFINE ADDRESS CONSTANT pseudo operation allows one
or more two-byte addresses to be defined within the program. The
operand of the ADCON may be specified as a symbolic label or, if
known, as an actual address. If a symbolic label is the operand,
the assembler determines the actual location of the label and inserts
in- the program the actual two-byte address as a high order byte of
the address in the rightmost position. The addresses when so trans-
posed may be used conveniently in the addresses of JUMP and
CALL instructions if desired. (See descriptions of these instructions

for the transposition that takes place during their assembly.)

An ADCON pseudo op occupies no space for itself, but address oc-
cupies two bytes of object program space. The operation does not
increase program execution time after the program is loaded. The
ADCON pseudo op may be labeled.

Examples:
Mnemonic Operand
ADCON TABLE

If TABLE has previously been assembled at location 03ES,
this two-byte constant appears in the object program,

ADCON 03ES8,9
Two two-byte address constants appear in the object program.

DUPLICATE — DUP n

The DUPLICATE pseudo operation duplicates the line of coding
following it as many times as specified by n. The line following
the DUP may be any kind of instruction, comment, or pseudo op-
eration except another DUP or an END pseudo operation. The
maximum value specified by n should not exceed FF. The DUP
instruction can be labeled, in which case the label refers to the
first byte in the duplicated series of bytes. A DUP instruction
should not have as its operand a forward referencing expression.

The DUP expression itself occupies no space and requires no execu-
tion time in the assembled object program. Depending upon what

type of instruction is duplicated, the assembled duplicated instruc-

tions will require additional time.

Examples:
Label Mnemonic Operand
BLANKS DUP 5

CON 020
The line following DUP is duplicated 5 times and can be re-
ferred to by the symbolic label BLANKS.

—~19 -

Mnemonic Operand
DUP 3
SLC

The SHIFT LEFT WITH CARRY instruction is duplicated
three times in the assembled object program.

Machine Instructions

LOAD INSTRUCTIONS

LOAD REGISTER — LR,nl,n2
CZME
Length=1 byte uu uu

The LOAD REGISTER instruction moves data from the register
specified by n2 to the register specified by n1. The instruction
takes no operand. When the same register is specified as both
source and destination (for example, LR,A,A) the instruction func-
tions as NOP (no operation).

LOAD REGISTER FROM MEMORY (H,L) — L,n
CZME
Length=1 byte uuuu

Loads the register specified by n with the content of memory loca-

tion addressed by the content of registers H and L. The H-register

must contain the high order address byte and the L-register the low-
order address byte (sece paragraph 7 of “Assembly Language Coding
Conventions’").

Example:
Mnemonic Operand
L,L none

Loads L-register with byte from memory.

— 20 —

LOAD IMMEDIATE — Ll,n
Literal or label CZME
Length=2 bytes uuuu

The LOAD IMMEDIATE instruction loads the register specified by

n with the literal value located in the second byte of this instruc-
tion. The operand may be expressed as a literal or as a label. (If
a label is the operand, it is assembled to refer to the pseudo instruc-
tion LADR for a convenient means of loading the entire two-byte
address.)

Example:
Mnemonic Operand
LLA 0

Loads the A-register with zero.

LOAD A-REGISTER FROM MEMORY — LDA
Symbolic label or actual address CZME
Length=3 bytes uuuu

Loads the A-register with the content of the memory location ad-
dressed by byte 2 (the high order byte) and 3 (the low order byte)
of the instruction.

Example:
Mnemonic Operand
LDA TABLE

Content of location TABLE is loaded into the A-register.

LOAD A-REGISTER FROM MEMORY (B,C) — LDAM,B
CZME
Length=1 byte uuuu

Loads the A-register with the contents of the memory location ad-
dressed by the contents of registers B and C. B-register must con-
tain the high order byte and C-register the low order byte.

21 -

LOAD A-REGISTER FROM MEMORY (D,E) — LDAM,
Cc z
Length=1 byte u u

m

D
M
u

c

Loads the A-register with the contents of the memory location ad-
dressed by the content of registers D and E.

LOAD REGISTERS H,L WITH CONTENT OF ADDRESS — LHL
Symbolic label or actual address CZME

Length=3 bytes uuuu
Loads the registers H and L with the contents of the memory loca-
tion addressed by bytes 2 and 3 of the instruction.

Example:
Mnemonic Operand
LHL 03ES8
Contents of address 03E8 are stored in L, of address 03E9 in
H.

LOAD REGISTERS WITH ADDRESS — LADR,n1,n2
Symbolic label or actual address CZME
Length=4 bytes uuuu

The LOAD REGISTERS WITH ADDRESS pseudo operation loads
two registers with the memory address provided or named by the
operand. If the two registers to be loaded are not specified by the
pseudo op, the assumption is made that H and L are the intended
registers. If a symbolic label is the operand of the pseudo op, the
assembler determines the memory location of the label and gener-
ates instructions of the address into the register specified at n1 (or
the H-register if not specified) and the low-order portion of the
address into the register specified at n2 (or the L-register if not
specified). If an actual address appears in the operand of the
pseudo op, the leftmost byte of the operand is loaded into n1 and
the next byte is loaded into n2.

The assembler generates two instructions which are inserted in the
program at each occurrence of a LADR pseudo instruction. The

length of the LADR pseudo instruction is three or four bytes de-
pending on the registers being loaded.

Examples:
Mnemonic Operand
LADR TABLE

The high-order byte of TABLE is loaded into the H-register
and the low-order byte into the L-register.

LADR,H,A TABLE
Same as above, except that the low-order byte is loaded into

the A-register, possible for addition or subtraction before it is
used as a memory reference.

LADR 03E8
H-and L-registers are loaded with 03 and E8 respectively.
LADR,SP 03E8

E8 is loaded into the lower order 8-bit of the stack pointer
and 03 into the higher order 8-bit of the stack pointer.

STORE INSTRUCTIONS

STORE REGISTER — ST,n
CZME
Length=1 byte uuuu
The STORE REGISTER instruction stores the contents of the regis-
ter specified by n in memory at the address contained in H and L.
(The H-and L-registers must have been previously loaded with a

16-bit memory address.) The STORE REGISTER instruction takes
no operand.

Examples:
Mnemonic Operand
ST,A none

The contents of the A-register are stored in memory at the
memory location specified by registers H and L.

23 -

Mnemonic Operand

ST,L none
The contents of the A-register are stored in memory.

STORE IMMEDIATE — STI
Literal or label CZME
Length=2 bytes uuuu

The STORE IMMEDIATE instruction stores the literal value of the
second byte of this instruction into memory at the address specified
by registers H and L. (H and L must previously have been loaded
with a T6-bit address.) The operand may be expressed as a hexa-
decimal value, an ASCII value, or a symbolic label. If the operand
is expressed as a label, the assembler refers to the lower order byte
of the two-byte address of the label.

Examples:
Mnemonic Operand
STI o $ 1R}

An ASCII dollar sign is stored in memory at address specified
by H-and L-registers.

STI 060
Hexadecimal value 60 is stored in memory.
STI PLACE

If PLACE is assembled at memory location 03E8, the low-
order byte of the 16-bit address of PLACE is stored in
memory.

STORE A-REGISTER IN MEMORY — STA
Symbolic label or actual address CZME
Length=3 bytes uuuu

Stores the contents of the A-register into the memory location ad-
dressed by bytes 2 and 3 of the instruction.

Y/

STORE A-REGISTER IN MEMORY (B,C) — STAM,B
CZME
Length=1 byte uuuu

Stores the contents of the A-register in the memory location ad-
dressed by the contents of registers B and C.

STORE A-REGISTER IN MEMORY (D,E) — STAM,D
CZME
Length=1 byte uuuu

Stores the contents of the A-register in the memory location ad-
dressed by the contents of registers D and E.

STORE REGISTERS H,L IN MEMORY — STHL
Symbolic label or actual address CZME
Length=3 bytes uuuu

Stores the contents of registers H and L into the memory location
addressed by bytes 2 and 3 of the instruction.

Example:
Mnemonic Operand
STHL 03E8

Contents of L are stored in 03E8 and contents of H in 03E9.

STACK INSTRUCTIONS

SAVE AF IN STACK — PUSH,A
CZME
Length=1 byte uuuu

Save the contents of register A and of F (5 flags) into the push-
down stack addressed by the stack pointer register SP. The con-
tent of SP is decremented by 2. (Content of A is stored in memory
address SP—1, F in SP-2, and SP=SP-2.)

25 -

SAVE B,C IN STACK — PUSH,B
SAVE D,E IN STACK — PUSH,D
SAVE H,L IN STACK — PUSH,H

CZME

Length=1 byte u u u u
RESTORE A,F FROM STACK — POP,A

CZME

Length=1 byte a a a a

Restore the last values in the pushdown stack addressed by SP into
A and F. The content of SP is incremented by two. (Content of
memory address SP stored in F, SP+1 in A. SP=SP+2))

RESTORE B,C FROM STACK — POP,B
RESTORE D,E FROM STACK — POP,D
RESTORE H,L FROM STACK — POP,H

CZME

Length=1 byte uuuu
EXCHANGE H,L WITH SP — SWAP

CZME

Length=1 byte uuuu

Exchange the contents of registers H and L and the last values in
the pushdown stack addressed by register SP. (Content of address
SP with L, SP+1 with H.)

TRANSFER H,L INTO SP — SPHL
CZME
Length=1 byte uuuu

Transfer the contents of registers H, L into register SP.

- 26

ARITHMETIC INSTRUCTIONS

ADD A,n
AM
CZME
Length=1 byte d a a a

The ADD instruction adds the value from the register specified by
n to the accumulator. If the letter “M” is specified instead of a
register, a byte from memory is added to the accumulator. The
location of the byte in memory is determined by the memory ad-
dress previously loaded into the H-and L-registers. All condition
code flags are affected by this instruction. The flags reflect the
status of the A-register at the end of the operation.

Examples:
Mnemonic Operand
AL none
Contents of the register L added to A-register.
AM none

Contents of a memory byte, whose address is contained in H
and L, added to A-register.

SUBTRACT — S,n
S,M
CZME
Length=1 byte a a a a

The SUBTRACT instruction subtracts a value in the register speci-

fied at n from a value in the accumulator (A-register). If the letter
“M” is specified instead of a register, a byte from memory is sub-

tracted from the accumulator. The location of the memory byte is
determined by the address contained in registers H and L. All con-
dition code flags are affected by this instruction. The flags reflect

the status of the A-register at the end of the operation. If a bor-

row beyond the high-order bit has occurred, the carry flag is set to
1.

- 27

Examples:
Mnemonic Operand
S,A none
Subtracts contents of A-register from A-register (result=0).
S,M none

Subtracts contents of memory byte (whose location is speci-
fied by registers H and L) from A-register.

ADD IMMEDIATE — Al
lLiteral or symbolic label CZME
Length=2 bytes a a a a

The ADD IMMEDIATE instruction adds the contents of the second
byte of this instruction to the value in the A-register. The oper-
and of the instruction, which is assembled as a literal in the second
byte of the instruction, may contain a one-byte literal value or may
refer to a symbolic label. [f a symbolic label is the operand, only
the low-order byte of a two-byte address will be referenced.

The SUBTRACT IMMEDIATE instruction operates in the same
manner except that the operand is subtracted from the A-register,

The instruction is two bytes long. All condition code flags are
affected by the operation.

Examples:
Mnemonic Operand
Al 07A
The value 7A is added to the A-register.
Sl KON?2

I the label KON2 is assembled at 03E8, the low-order byte
of the two-byte address is subtracted from the A-register.

ADD WITH CARRY — AC,n
ACM

CZME

Length=1 byte a a a a

28

SUBTRACT WITH BORROW - SB,n
SB,M

The ADD WITH CARRY instruction adds the value of the carry
flag and the value of the specified register n to the A-register.

The SUBTRACT WITH BORROW instruction subtracts the value of
the carry (borrow) flag and the value of the specified register n
from the A-register. If an “M” is specified instead of a register, a
memory byte and the carry flag are subtracted or added. The lo-
cation of the memory byte is determined by the address contained
in registers H and L.

All condition code flags are affected by these instructions.

Examples:
Mnemonic Operand
AC,A none

Value of carry flag and contents of A-register are added to
the A-register (effect is identical to SCL instruction).

AC,M none

Value of carry flag and contents of memory byte at location
specified by H and L are added to the A-register.

SB,M none

Value of carry flag and contents of memory byte whose loca-
tion is specified by H and L are subtracted from A-register,

ADD WITH CARRY IMMEDIATE — ACI
Literal or symbolic label CZME
Length=2 bytes a a a a

SUBTRACT WITH BORROW IMMEDIATE -- SBI

Literal or symbolic label

The ADD WITH CARRY IMMEDIATE adds the value of the carry
flag and the value of the second byte of this instruction to the
contents of the A-register. The operand of the instruction may be
expressed as a literal or as a symbolic label. If the operand is a

symbolic label, only the low-order byte of a two-byte address is
referenced.

The SUBTRACT WITH BORROW IMMEDIATE subtracts the value
of the borrow (carry) flag and the value of the second byte of the
instruction from the contents of the A-register.

Examples:
Mnemonic Operand
ACI OBF
The value of the carry flag and the value BF are added to the
A-register.
ACI 0

Only the value of the carry flag is added to the A-register,
because the literal value also added is zero.

SBI 1

The value of the carry (borrow) flag and the literal value 1
are subtracted from the A-register.

SBI TAG .
The value of the carry (borrow) flag and the low-order byte
of TAG’s address (which could be assembled at OBB8) are
subtracted from the A-register.

ADD SP TO H,L. — DAD,SP
CZME
Length=1 byte a uwuu

Adds the content of register SP to the contents of registers H and
L. If the overflow is generated, the carry flag is set; otherwise,
the carry flag is reset. The other condition flags are not affected.
This is useful for addressing data in the stack.

ADD B,C TO H,L — DAD,B
ADD D,E TO H,L — DAD,D
ADD H,L TO H,L. — DAD,H
CZME
Length=1 byte a u uu

~30 -

DECIMAL ADJUST ACCUMULATOR — DAA
Cl CZME
Length=1 byte a a a a a

The 8 bit value in the accumulator is adjusted to form two 4-bit
binary coded decimal digits using two carry flags. The first carry
flag, C1, checks the overflow from the 4th bit. The other is the

usual carry flag, C. The following value is added to the A-register
under the conditions of carry and previous contents of A-register

for the decimal adjust.

Condition A: A-register bits 3 to 0 10 and bits 7 to
4 =9 or A-register bits 7 to 4 10 or
C=1
Condition B: A-register bits 3 to 0 10 or C1 =1
A B Add to A-register
false false 00
false true 06
true false 60
true true 66

INCREMENT — INC,n
DECREMENT — DEC,n
CZME
Length=1 byte ua a a
The INCREMENT instruction adds the value 1 to the specified
register n.

The DECREMENT instruction subtracts the value 1 from the speci-
fied register n.

Both of these instructions are one byte long. The carry flag is not
affected by the INCREMENT or DECREMENT instructions. All
other flags reflect the status of the specified register n at the end
of the instruction execution.

37 -

Examples:
Mnemonic Operand
INC,A none
The contents of the A-register are incremented by 1.
DEC,L none

The contents of the L-register are decremented by 1.

INCREMENT MEMORY - INC,M
DECREMENT MEMORY — DEC,M
CZME
Length=1 byte uaaa

The contents of memory designated by registers H and L are incre-
mented (decremented) by one. All of the condition flags except
the carry flag are affected by the result.

INCREMENT DOUBLE B,C — IND,B
CZME
Length=1 byte uuuu

The content of register pair B and C is incremented by one.

Example:
Mnemonic Operand
IND,B none

Content of B-register = 01, C-register = E9 if the previous
content of B-register was 01, C-register ES8.

INCREMENT DOUBLE D,E — IND,D
INCREMENT DOUBLE H,L — IND,H
INCREMENT DOUBLE SP — IND,SP
CZME
Length=1 byte uuuu
DECREMENT DOUBLE B,C - DCD,B
DECREMENT DOUBLE D,E — DCD,D
DECREMENT DOUBLE H,L — DCD,H
DECREMENT DOUBLE SP — DCD,SP

—32 -

SHIFT INSTRUCTIONS

SHIFT RIGHT — SR
SHIFT LEFT — SL
CZME
Length=1 byte a uuu

All shifts are circular.

The SHIFT RIGHT instruction shifts the contents of the A-register
one bit to the right, placing the underflow bit into the vacated
high-order position and copying it into the carry flag as well. The
Zero, Minus, and Even Parity flags are unaffected by this instruction.

SHIFTRIGHT € 76543210 Underflow
(before) 0 10000011
- 1000001 1
(after) 111000001

The SHIFT LEFT instruction operates in the same manner except
that the direction of the shift is to the left and the overflow bit is
placed in the low-order position and copied into the carry flag as
well.

SHIFT LEFT Overflow C 76543210
(before) 101000110
0 - Looo110 _
(after) 0 10001100
Examples:
Mnemonic Operand
SR none

Contents of the A-register shifted one bit right.

SL none
Contents of the A-register shifted one bit left. In both ex-
amples, only the carry flag is affected.

~33 -

SHIFT RIGHT WITH CARRY — SRC
SHIFT LEFT WITH CARRY — SLC
CZME
Length=1 byte a uuu

The SHIFT RIGHT WITH CARRY instruction links the A-register
to the carry flag position as if they formed a 9-bit register and
shifts the contents of the nine bits one bit to the right. The
underflow bit from the low-order position is placed in the vacated
carry flag position. The Zero, Minus, and Even Parity flags are
unaffected by this instruction.

SHIFT RIGHT WITH CARRY

C 76543210 Underflow
(before) 1 10010110

. 11001011 0
(after) 0 11001011

The SHIFT LEFT WITH CARRY instruction operates in the same
manner except that the direction of the shift is to the left. The
overflow carry bit is placed in the low-order position.

UNCONDITIONAL BRANCH INSTRUCTIONS

JUMP —]
Symbolic label or actual address CZME
Length=3 bytes uuuu

The JUMP instruction discontinues the normal sequential flow of
control from instruction to instruction and unconditionally jumps to
the instruction whose label is specified in the operand of the instruc-
tion. The operand may express the location as an actual address or
as a symbolic label of that address.

Note that the JUMP instruction is three bytes in length. The left-
most byte contains the operation code of the instruction. The
other two bytes contain the 16-bit address of the instruction to

34 —

which control will be transferred. The assembler transposes the
bytes containing the address so that the high-order portion (8 bits)
are assembled in the rightmost byte and the low-order portion (8
bits) are assembled in the middle byte. The address contained in
the operand is moved to the program counter (P-register) during .
execution of this instruction.

Examples:
Mnemonic Operand
J 03ES8

Jumps unconditionally to instruction assembled at program lo-
cation 03E8. Note that high- and low-order portions of ad-
dress are transposed by the assembler.

J ENDI
If ENDT1 is assembled at memory location OFAO, the JUMP
instruction is assembled as shown.

CALL — CL
Symbolic label or actual address CZME
Length=3 bytes uuuu

Transfers contents of program counter to the pushdown stack in
memory addressed by the register SP. High-order byte in SP—1
and low-order byte in SP—2. The content of SP is decremented by
two (SP=SP—2). The address represented by byte 2 and byte 3 is
transferred into the program counter. Jump unconditionally to the
instruction located in memory location addressed by bytes 2 and 3
of the instruction.

Examples:
Mnemonic Operand
CL DIVIDE

If the subroutine named DIVIDE is located in memory at
0OBBS8, program control is transferred to that address after the
return address is saved.

CL 0BB8
Same as above example.

235

RETURN — R
CZME
Length=1 byte uuuu

Returns to the instruction in the memory location addressed by the
last values shifted into the pushdown stack addressed by SP. (Con-
tent of SP and SP+1 are transferred into the program counter.) The
content of SP is incremented by two.

CONDITIONAL BRANCH INSTRUCTIONS

Each conditional branch instruction tests the status of one of the
four condition control flags during execution. The numbers and
names of the flags and their settings are shown in the table below:

Flag

Number: | 00 01 10 11

Flag

Name: Carry Zero Minus Even Parity
Flag

Off 0 0 0 0

Status: NC NZ NM NE

Flag

On 1 1 1 1

Status: C Z M E

Flag Overflow Register Register Sum of 1’s in
On past high- contains contains Register is an
Status order bit of | all zeros. 1 in high- even number.
Meaning: | A-register order bit

36 —

Flag Conditional Conditional Conditional
Test Jumps Calls Returns
Carry JC CLC RC

Not Carry INC CLNC RNC
Zero |7 CLZ RZ

Not Zero INZ CLNZ RNZ
Minus M CLM RM
Not Minus INM CLNM RNM
Even Parity JE CLE RE

Not Even Parity |NE CLNE RNE

CONDITIONAL JUMP INSTRUCTIONS
CZME
Length=3 bytes uuuu

The CONDITIONAL JUMP instruction tests the specified condi-
tion codes for the designated condition (on or off), and if the
condition is found to be true, transfers control to the instruction
address supplied by the operand of the conditional jump instruc-
tion. If the designated condition is found to be false, control
continues in line to the next instruction following the conditional
jump instruction.

The CONDITIONAL JUMP instruction, like the unconditional
JUMP, is three bytes long, with the high- and low-order address
bytes transposed by the assembler. Although the instruction tests
a condition code flag, the flags are unaffected by the test.

CONDITIONAL CALL INSTRUCTIONS
CZME
Length=3 bytes uuuu

The CONDITIONAL CALL instruction tests the specified condition
code for the designated condition and, if the condition is found
to be true, transfers control to the subroutine whose label or ad-
dress is contained in the operand of the instruction. The CONDI-
TIONAL CALL instruction also saves the address of the next

—37

sequential instruction as a return address from the subroutine.
The return address is saved in the stack as described in the scc-
tion on the unconditional CALL instruction. If the specified
condition is found to be false, program control continues in line
to the next sequential instruction following the CONDITIONAL -
CALL. The instruction address is transposed by the assembler so
that the high-order portion occupies the rightmost byte.

CONDITIONAL RETURN — RC
CZME
Length=1 byte uuuu

The CONDITIONAL RETURN instruction tests the specified condi-
tional code flag for the designated condition and, if the condition
is found to be true, transfers control to the return address placed
in the stack by the last CALL instruction. The CONDITIONAL
RETURN instruction takes no operand.

LOGICAL INSTRUCTIONS

The following logical instructions compare the value of each bit
position of the accumulator (A-register) to the value in the corres-
ponding bit position of the designated register, memory byte, or
instruction byte. The result of each type of logical operation for
all possible combinations of bit values is as follows:

(Logical Product) (Logical Sum) (Logical Difference)

___AND_ B OR Exclusive OR
1010 1T 010 1010
100 I 100 1100
1000 1T 110 110

Results in A-Register

None of the logical operations can generate a carry condition. Con-
sequently, the carry condition code is always set to zero as a result
of a logical operation. The zero, minus, and even parity condition

code flags reflect the status of the A-register at the end of a logical
operation.

AND — N)n
N,M CZME
Length=1 byte 0aaa

The AND instruction “ands” the contents of the A-register with the
contents of the register specified by n. If “M” is specified instead
of a register, the instruction “ands” the contents of a memory byte
with the A-register. The location of the memory byte is specified
by the address in the H- and L-registers. The result of the AND
operation, the logical product, is formed in the A-register.

The carry flag is set to zero as a result of this instruction. All
other condition code flags—zero, minus, and even parity— reflect the
status of the A-register at the end of the instruction execution.

Example:
Mnemonic Operand
N,H none

The contents of the H-register and “anded” with the contents
of the A-register.

OR — O,n
o,M
CZME
Length=1 byte -0 a a a

The OR instruction “ors” the contents of the A-register with the
contents of the register specified by n. If “M” is specified instead
of a register, the instruction “ors” the contents of a memory byte
with the A-register. The location of the memory byte is specified
by the address contained in the H-and L-registers. The result of
the OR operation, the logical sum, is formed in the A-register.

The carry flag is set to zero as a result of this operation. All other
condition code flags reflect the status of the A-register at the end

~39

of instruction execution.

Example:
Mnemonic Operand
O,A none

Contents of the A-register are “ored” with itself, resulting in
no change in the A-register, but all condition flags except
carry reflect status of A-register.

EXCLUSIVE OR — X,n
XM
CZME
Length=1 byte) 0 aa a

The EXCLUSIVE OR instruction “exclusively ors” the contents of
the A-register with the contents of the register specified by n. If
"M is specified instead of a register, the instruction “exclusively
ors” the contents of a memory byte with the A-register. The loca-
tion of the memory byte is specified by the address contained in

the H- and L-registers. The result of the EXCLUSIVE OR operation,
the logical difference, is formed in the A-register.

The carry flag is set to zero as a result of this operation. All other
condition code flags reflect the status of the A-register at the end
of the instruction execution.

Example:
Mnemonic Operand
XA none

Contents of the A-register are “‘exclusively ored” with itself.
Result in A-register is zero.

— 40 —

AND IMMEDIATE — NI

OR IMMEDIATE — OI

EXCLUSIVE OR IMMEDIATE — XI

Literal or symbolic label C ZME
Length=2 bytes 0 a a a

The AND IMMEDIATE, OR IMMEDIATE and EXCLUSIVE OR
IMMEDIATE instructions produce the same logical results as the
AND, OR and EXCLUSIVE OR instructions, respectively. Instead
of combining the contents of the A-register logically with another
register or with a byte from memory, these instructions combine

the A-register logically with the second byte of the instruction. The
AND IMMEDIATE, OR IMMEDIATE and the EXCLUSIVE OR
IMMEDIATE instructions are each two bytes long. The value in the
second byte, the operand, may be expressed as a literal value or as
a symbolic label. If reference is to a symbolic label, it is the low-
order byte of the address of the label which is assembled in the
second byte of the instruction.

The carry flag is set to zero following execution of the AND
IMMEDIATE, OR IMMEDIATE or EXCLUSIVE OR IMMEDIATE
instruction. The other flags reflect the status of the A-register fol-
lowing execution of the instruction.

Example:
Mnemonic Operand
NI OFF
The contents of the A-register are “anded” with the hex value
FF.

COMPARE — C,n
CM

CZME

Length=1 byte a a a a

The COMPARE instruction subtracts the value in the specified regis-
ter n from the contents of the A-register without altering the con-
tents of the A-register from its initial value. The results of the
subtraction are not available. The function of the instruction is to

41

set the condition code flags as if a subtract instruction had occurred,
thereby comparing two registers without destroying the contents of
either register. If an M is specified instead of a register, the A-regis-
ter is compared with a memory byte whose location is designated
by the address in registers H and L. :

All condition code flags are affected by this instruction. At the
end of the instruction execution, the flags reflect the status of the
result that would have appeared in the A-register if a SUBTRACT
instruction had been executed.

COMPARE IMMEDIATE — ClI
Literal or symbolic label) CZME
Length=2 bytes a a a a
The COMPARE IMMEDIATE instruction sets the condition code
flags as if a subtraction of the second byte of the instruction from
the contents of the A-register had occurred. The initial contents of
the A-register are not altered by the instruction. The value in the
second byte may be any literal value or may be expressed as a sym-
bolic label. If a symbolic label is the operand, the low-order byte
of the address of the label is compared with the A-register. The
COMPARE IMMEDIATE instruction is two bytes long.

All condition code flags reflect the status of the A-register as if a
SUBTRACT IMMEDIATE instruction had occurred.

Example:
Mnemonic Operand
Cl 0D

The hexadecimal value, 0D, is compared to (as if subtracted
from) the A-register.

—42 -

MISCELLANEOUS INSTRUCTIONS

STOP — STOP
CZME
Length=1 byte uu uu

The STOP instruction causes the program to halt. If an interrupt
subroutine is exccuted, control is returned to the instruction follow-
ing the STOP. An impassable STOP routine is shown in the
example below.

Example:
Mnemonic Operand
LOOP STOP none
J LOOP

Interrupt system services interrupts (if any) and returns con-
trol to this instruction, which jumps back to STOP instruction
(infinite loop).

NO OPERATION — NOP
CZME
Length=1 byte uu uu

The NOP instruction has no discernable effect except that the pro-
gram counter is advanced to the next sequential instruction follow-
ing the NOP and time elapses to perform the “no operation.”

Example:
Mnemonic Operand
NOP none

No operation. The program continues to the next instruction
following the NOP.

EXCHANGE H,L and D,E - XCH
' CZME
Length=1 byte uuuu

Exchanges the contents of registers H,L and D,E.

43 -

H,L INTO PROGRAM COUNTER — PCHL
C7ZME
Length=1 byte uuuu

Transfers the contents of registers H,I. into the program counter. .

CMA
Z ME
Length=1 byte uuuu
The content of the A-register is complemented.
STC
C M E
Length=1 byte a uuu
Sets the carry flag to 1.
CMC
CZME
Length=1 byte a u uwu

The content of the carry flag is complemented.

MACROS

A macro call should name the macro and list the parameters, sep-
arating them by spaces or commas. Parameter zero is in the label
field. Macro calls may be nested (one macro calling another) to a
depth of four.

A macro definition begins with a MACRO pseudo op and ends
with a MEND pseudo op. The macro definition may reference a
parameter in parentheses nested to any depth. When the macro
call is expanded, the parameter will be substituted for the paren-
thesized expression. A single character can be obtained by using
two expressions within the parentheses: a parameter number and
a character number (starting at 1). The JUMP pseudo op is

— 44 —

followed by an expression and a macro label (begins with a period
‘). Assembly is transferred to the label if the expression is not
zero.

Examples:

l. A macro to put the contents of two consecutive memory lo-
cations into registers A and B.

The macro definition should appear before the first use of
the macro, as follows:

MACRO
GET2
LADR (1)
L,A
LADR (1)+1
L,B
MEND
Note the use of (1) to reference the first (and only) parameter

of the macro. This parameter is used to specify the address
of the two memory locations.

GET2 LABEL
The above can now be used as shorthand for:
LADR LABEL
L,A
LADR LABEL+1
L,B

2. Suppese we wished to be able to specify the registers which
are loaded in the GET2 macro. These can be given as para-
meters 2 and 3 if the macro definition is:

MACRO
GET2

LADR (1)
L,(2)

LADR (1)+1
L,(3)

MEND

— 45 —

Now the macro call

GET2 STUFF,D,E
will be the equivalent of

LADR STUFF

L,D

LADR STUFF+1

L,E

The use of the JUMP pseudo op can be illustrated by creating
a macro to shift right or left a specified number of places,
with or without the carry bit.

MACRO
SHIFT
COUNT EQU
AGAIN S(1)(3)
COUNT EQU COQUNT—1
JUMP COUNT+0',.AGAIN
MEND

Note the use of ' to complement the results of +.
SHIFT R,3,C
will generate

SRC
SRC
SRC

* ok ok ok
SHIFT L,4
will generate

SL
SL
SL
SL

— 46 —

INPUT/OUTPUT DEVICE INTERRUPTS

Interrupt capability is provided with the Q1 processor so that
slower input/output devices may be serviced while the main program
continues execution.

Automatic Interrupt Features

One level of interrupt is provided by system hardware. An input/
output device sends an interrupt signal to the processor whenever
it needs attention from the processor. Following completion of
the program instruction in progress, the interrupt is acknowledged
by the processor unless the following conditions exist:

1. Another interrupt is being serviced, in which case all inter-
rupts are disabled until the current 1/O interrupt is completed.

2. Interrupts are disabled.

If none of the above conditions exist, the processor will be inter-
rupted. The processor automatically issues a call to location 00‘

INTERRUPT INSTRUCTIONS

DISABLE INTERRUPT — DIS
CZME
Length=1 byte uuuu

The DISABLE INTERRUPT instruction prevents any interrupts
from occurring.

ENABLE INTERRUPT — ENB
CZME
Length=1 byte uuuu

The ENABLE INTERRUPT instruction allows interrupts. The ENB
instruction does not affect interrupt control until one instruction
cycle has elapsed. This delay permits the execution of an instruc-
tion, such as a return from an interrupt subroutine to the main
program, before another interrupt can occur.

—47 —

Input/Output Devices

A maximum of thirty-two input/output device addresses may be
connected to the input/output control unit (ICU) of the Q1 proces-
sor. (Some devices use more than one address.) The characteristics
of the devices available from Q1 Corporation, and the status byte
and control instructions applicable to each device, are described
below.

Keyboard
Address 01

The keyboard is an input/output device. It is an electronic unit
which produces a subtle audible click when a key is depressed.
Each key position generates an eight-bit code with the exception of
the four shift keys and a repeat key. The repeat key inputs the
code of a previously depressed key at an approximate rate of ten
characters per second.

MODE SHIFTING

Depressing the alpha key or the unshifted condition produces Mode
1. Keys depressed in Mode 1 will cause the keyboard to output
codes corresponding to the lower case, or unshifted, characters
depicted on the keytops.

Depressing the shift or shift lock keys produces Mode 2. This
keyboard mode is indicated by the illumination of the shift lock
keytop. Keys depressed in Mode 2 will cause the keyboard to out-
put codes corresponding to the upper case, or shifted, characters
depicted on the keytops.

Depressing the third numeric shift key produces Mode 3. This key-
board mode is indicated by the illumination of the third numeric
keytop. Keys depressed in Mode 3 will cause the keyboard to
output codes corresponding to the upper legends depicted on the
keytops.

— 48 —

Depressing the fourth shift key produces Mode 4. This keyboard
mode is indicated by the illumination of the fourth shift keytop.
Keys depressed in Mode 4 will cause the keyboard to output codes
corresponding to additional special characters. Depressing a shift or
control shift key will reset the shift lock. All shift modes can be’
externally programmed; however, depressing shift keys will over-ride
this external control.

IN,01

Loads the A-register with a data byte from the keyboard
buffer, and clears the buffer to a hexadecimal 00.

OUT,01
Keyboard Control

In the A-register, the status bit assignments are:

76543210

Bit 0 — Click: keyboard produces an audible click
Bit T — Beep: keyboard produces an audible beep
B!t 2) — In combination, control the shift keys and keyboard
Bit 3)
mode. See table below.
Bit 4 — llluminates K1 keytop
Bit 5 — lluminates K2 keytop

Bit 6 — Illuminates K3 keytop

— 49

Bit 3 Bit 2 Alpha Shift Third Fourth Mode

0 0 X OFF OFF OFF 1
0 1 OFF X OFF OFF 2
1 0 OFF OFF X OFF 3
1 1 OFF OFF OFF X 4
X X ON OFF OFF OFF 1
X X OFF ON OFF OFF 2
X X OFF OFF ON OFF 3
X X OFF OFF OFF ON 4

KEYBOARD INTERRUPTS
The keyboard attempts to interrupt the processor whenever a key
is depressed.

Display
Address 03,04

The display is an output device. It is a fully buffered electronic
unit, capable of displaying eight lines of data under program control.
Each line contains a minimum of 37 character positions. Each
character code is seven bits long. When a data byte is written from
the processor to the display, the high-order bit is ignored. After
one line has been completely written, the next character automati-
cally appears in position 1 of the following line. However, when
the last line is filled, the next character will automatically appear in
position 1 of the first line.

To write a character on the display, address the device and output
the first character. Since the display is refreshed by internal elec-
tronics asynchronous to processor operations, the display status

—50 —

\
must be tested prior to writing each subsequent character or reset
command. Control instructions may be issued to reset the display
to character position 1 of line 1, nondistructively blank or restore
the display, or stip the display to the next character position.

OUT,03
Writes a character on the display

IN,03
Status

Display busy if bit 7 = 1.

OuUT,04
Display Control

The control bit assignments for the A-register are:

76543210

Bit 0 — Reset: resets display to leftmost position of line 1

Bit T — Blank: display is blanked, but display buffer is not
erased

Bit 2 — Unblank: buffer contents restored to display

Bit 3 — Step: character position is advanced one space to the

right or to position 1 of the next line if prior
position was at the end of a line

Printer

— 51 —

Address 05,06,07

The printer is a serial impact printer. Separate addresses are used
for printing and paper or carriage motion as follows.

OUT,05

Print Character

IN,05
Status

The printer status byte has the following format:

76543210

Bit 5
Bit 6
Bit 7

ouUT,06

— Out of ribbon if bit =1 -
— Error occurred if bit = 1
— Printer busy if bit = 1

Moves the carriage in a direction determined by a previous
OUT,07. The number of increments moved is normally
determined by a 10 bit number. The low-order 8 bits are
the contents of the A-register when OUT,06 is given. The
highest two bits are the lowest two bits of the A-register
when a previous OUT,07 is given. The increments are 1/48
of an inch in the vertical direction and 1/60 of an inch in
the horizontal direction.

OuT,07

76543210

Bit 0)
Bit 1)

Bit 2
Bit 3
Bit 4
Bit 5
Bit 6

Bit 7

See OUT,06

0 = Forward Motion; 1 = Reverse Motion
0 = Carriage Motion; 1 = Paper Motion
Lower ribbon

Raise ribbon

Provides expanded horizontal resolution of 1/120
of an inch

Resets the printer and the interface electronics and
moves the carriage to the extreme left position.
Should be used before any other commands are
given to the printer. It should also be used when
an error condition occurs.

— 52—

PRINTER INTERRUPTS

The printer is ready to accept data or control instructions when
bit 7 of the status byte = 0. The printer interrupts as bit 7
becomes 0.

The Disk Unit
Address 19,1A,1B,1C

The Q1 disk has 77 tracks with from 8 to 511 bytes per record.
The rotational speed of the disk is 360 r.p.m. It has a recording
density of 3200 bpi and a data transfer rate of 250 kilobits per

second.

IN,19
Read Data

This instruction transfers one parallel byte of data from the
disk controller to the processor’s accumulator. The controller
normally supplies a byte of data every 32 microseconds.
However, it is capable of stacking up to 3 bytes in a first-in-
first-out (FIFO) holding register.

OouT,19
Write Data

This instruction transfers one parallel byte of data from the
A-register to the disk controller. Each byte is loaded into
the FIFO register. The controller transfers one byte of data
from the FIFO to a one byte shift register every 32 micro-
seconds.

IN,TA
Status

This instruction makes disk unit status information available
for interrogation by the processor. The format of the status
byte is:

— 53—

76543210

Bit 0 — Byte Ready: The FIFO is ready to either transfer
a byte of data to the processor or accept a byte
of data from the processor

Bit 1 - File Unsafe: The selected disk has detected a
controller violation or disk unit hardware failure
during a write operation

Bit 2 — AM Detect: The controller has read an address

Bit 4 — Track 0: The selected drive’s head is located at
track 0

Bit 6 — SD Ready: The sclected disk is loaded properly
and is up to speed

Bit 7 — Busy: The controller is in the process of per-
forming a write or step operation

OUT, 1A

Disk Control 1

This instruction, in conjunction with the contents of the A-
register, selects the appropriate disk within the system, or
performs a step track or resets the disk system.

A-Register
76543210

Bit 0 — Step track up
Bit 1 — Step track down
Bit 2 — Select disk drive 1 and load head

|
Bit 3 — Select disk drive 2 and load head
Bit 4 Select disk drive 3 and load head
Bit 5 Select disk drive 4 and load head
Bit 6 — Deselect all disk drives

Bit 7 Reset disk system

OUT,1B
Disk Control 2
This instruction, in conjunction with the contents of the A-

register, initiates either a read, write sector or write track
operation.

— 54 —

A-Register
76543210
Bit 0 — Start Read
Bit 6 — Start Write Track
Bit 7 — Start Write Sector
OUT,1C

Disk Control 3

If the clock pattern to be written is not OFF, this instruction
transfers the clock data from the A-register to the disk con-
troller. The clock data must be transferred to the controller
before the data.

DISK INTERRUPT

The disk controller does not use the interrupt system. The
controller is busy during a step or write operation.

Programmable Timer
Address 00

The programmable timer is an input/output unit. It may be used
to issue an interrupt request after a prescribed delay. The pro-
grammable timer also puts a value of 1 into the second bit posi-
tion of the status byte after each programmed interval. To enable
the timer, it is necessary to set the timer from the A-register with
an OUT instruction. An IN instruction will read its status.

OuT,00
Enable Timer

This instruction, in conjunction with the contents of the A-
register, starts the timer. The timer will run for approximately
2.048 milliseconds times the decimal equivalent in the A-
register.

IN,00
Status

This instruction reads the status of the programmable timer.

— 55 .

The time status byte has the following format:
76543210
Bit 0 — Restart Interrupt if bit = 1

Bit 1 - Timer running if bit = 0

PROGRAMMABLE TIMER INTERRUPT

The programmable time interval is over when bit 1 of the
status byte becomes 1. The time interrupts as bit 1
becomes 1.

— 56 —

Communications Interface Unit
Address 010,011,012,013

The Communications Interface Unit (CIU) contains all the hardware
required to communicate asynchronously or synchronously through
standard modems such as 103, 201, 94 202 types. Interface signals
are in accordance with EIA specification RS—232C. Teletype current
loop signals are also available. The CIU also has the capability to
control an 801C2 type Automatic Calling Equipment (ACE) as
defined by EIA specification RS—366. The CIU operates in simplex,
half or full-duplex mode at programmably selected data rates. The
CIU is expandable to control up to eight mixed speed communication
channels.

ADR IN ouT

010 DATA DATA

011 STATUS 1 CONTROL |

012 STATUS 2 CONTROL 2

013 CONTROL 3
OuUT 011
CONTROL 1

A-Register
76543210

Bit 0 — Number Bit 1

Bit 1 — Number Bit 2

Bit 2 — Number Bit 3 To ACE

Bit 3 — Number Bit 8

Bit 4 — Digit Present

Bit 5 — Channel Select Control

Bit 6 — Receiver Control 3

Bit 7 — Transmitter Control 3

—57 —

IN 011
STATUS 1
A-Register
76543210

Bit 0 — Power on

Bit T — Call originate status

Bit 2 — Data line occupied From ACE

Bit 3 — Abandon call and retry

Bit 4 — Present next digit

Bit 5 — Spare

Bit 6 — Spare

Bit 7 — Ring Indicator . From RS-232
OuT 012
CONTROL 2

A-Register
76543210

Bit 0 — Master reset

Bit T — DAta terminal ready

Bit 2 — Request to send

Bit 3 — Secondary transmitter on

Bit 4 — Set error flag

Bit 5 — Call requested

Bit 6 — Stop elements: 0 = one element, 1 = more than

one element (async mode only)
Bit 7 — Synchronous mode

— 58 —

IN 012
STATUS 2
A-Register
76543210
Bit 0 — Secondary carrier detected
Bit 1 - Data set ready
Bit 2 — Clear to send from R5—232
Bit 3 — Carrier detect
Bit 4 — Framing or overrun error/
data not available
Bit 5 — Sync detect
Bit 6 — Receiver ready
Bit 7 — Transmitter ready
OuUT 013
CONTROL 3
A-Register
76543210
Bit 0 — Receiver Channel Address 0 /Rate Select 0
Bit 1 — Receiver Channel Address 1 /Rate Select 1
Bit 2 — Receiver Channel Address 2 /Rate Select 2
Bit 3 — Spare /Rate Select 3
Bit 4 — Transmitter State Address O /Even Parity
Bit 5 — Transmitter State Address 1 /Inhibit Parity
Bit 6 — Transmitter State Address 2 /Word Length O
Bit 7 — Spare [Word Length 1

~59 —

Rate Select Bits Word Length Bits, Code
3 2 1 0 Baud Rate 7 6 Level
0 0 0 0 50 0 0 5
0 0 0 1 75 0 1 6.
0 0 1 0 110 1 0 7
0 0 1 1 134.5 1 1 8
0 1 0 0 150
0 1 0 1 300
0 1 1 0 600
0 1 1 1 1200
1 0 0 0 1800
1 0 0 1 2000
1 0 1 0 2400
1 0 1 1 3600
1 1 0 0 4800
1 1 0 1 7200
1 1 1 0 9600
1 1 1 1 19,200
INTERRUPTS

*Any of the following conditions causes an interrupt:
1. Ring indicator

2. Any change on the Data Set Ready of Clear to Send status
lines or secondary received data line

3. Sync detect
4, Receiver ready

Transmitter ready

CHANNEL SELECTION

To select a communications channel execute an OUT 011 with
20 in the A-register then load the A-register with the appropriate
receiver and transmitter channel addresses and execute an OUT 013.

—60 —

RECEIVER BAUD RATE AND MODE CONTROL

To program the receiver, execute an OUT 011 with 40 in the
A-register. Set A-register bits 6 and 7 for desired mode and execute
an OUT 012.

Bit
7 6 Mode
Asynchronous mode with 1 stop element
1 Asynchronous mode with 1.5 stop elements for 5
level code or 2 stops for 6, 7, or 8 level codes
1 0 Synchronous mode
| 1 Forbidden combination

Load the A-register with the appropriate Baud rate, parity, and
word length codes and execute an OUT 013.

TRANSMITTER BAUD RATE AND MODE CONTROL

To program the transmitter, execute an OUT 011 with 80 in the
A-register. If the transmitter characteristics are to differ from the
receiver’s, execute OUT 012 and OUT 013 as described in the
receiver programming description; otherwise skip the OUT 012 and
reload the A-register with the Baud rate, parity, and word length
codes and execute an OUT 013.

ORIGINATING A CALL

Prior to originating a call, the channel must be selected, receiver
and transmitter programmed, and the ACE turned on. ACE status
is tested by executing an IN 011. Bit 0, ACE power on, should be
the only bit set. To originate a call execute an OUT 012 with 11
in the A-register. This turns on Data Terminal Ready and Call
Request. Call Request must remain set to a one until the call is
terminated. Test ACE status until 15 is read, ACE power on, data
line occupied and present next digit. At this time, load the A-
register bits O through 3, number bits, with the BCD equivalent of
the first digit to be dialed and bit 4, digit present, set to a one.

- 61

Execute an OUT 011 for the first digit to be dialed. ACE status
bit 4, present next digit, will go to a zero. When present next digit
returns to a one, put up the BCD equivalent of the next digit to be
dialed and digit present, then execute an OUT 011.

Repeat this sequence until the complete number has been dialed. At
this time, the ACE status will read 17 indicating that the call
originate status is set to a one. The data set is now in the data
mode and the ACE has relinquished control of the communications
channel to the data set. This status is verified by testing bit 1, data
set ready, of status byte 2 for a one condition.

If the call is not completed, ACE status bit 3, Abandon call and retry,
will become set to a one. In this instance, terminate the call and
repeat the call originate procedure.

ANSWERING A CALL

An incoming call is detected by bit 7, ring ‘ndicator, of status byte
1 being set to a one. In response to this status, execute an OUT 012
with A-register bit 1, data terminal ready, set to a one.

TERMINATING A CALL
To terminate a call, execute an OUT 012 with 00 in the A-register.

Interface Operation
RECEIVE MODE

When the distant data set is about to send, bit 3, carrier detect, of
status byte 2 will be set to a one. Received data will be assembled
in a buffer. When a byte is ready to be transferred from this

buffer to the processor, bit 6, receiver ready, of status byte 2 will

be set to a one. An IN 010 response will transfer the received data
byte to the A-register and reset the receiver ready bit to zero. |If
the above IN 010 is not executed by the time the next received byte
is assembled in the buffer, the previous byte will be lost and the
receiver will set bit 4, overrun error, of status byte 2. If, in the

—-62 —

asynchronous mode, no valid stop bit has been detected when a
received byte is assembled in the buffer, the receiver will set bit 4,
framing error, of status byte 2. To clear the overrun and/or

framing error status, execute an OUT 012 with bit 4, reset error flag,
in the A-register set to a one. Each time a received data byte,
encoded 23X, is assembled in the buffer, bit 5, sync detect, of status
byte 2 will be set to a one.

In the synchronous mode, character synchronization is performed by
the receiver. Sync characters to be transferred to the processor will
be indicated by bit 4 of status byte 2 for stripping purposes.

TRANSMIT MODE

In order to transmit, bit 3, carrier detect, of status byte 2 must be
tested for a zero condition to insure that the distant data set is in
the receive mode. To enable transmission from the local data set,
execute an OUT 012 with bit 2, request to send, set in the A-register.
The first character to be transmitted may be loaded into the trans-
mitter buffer by executing an OUT 010. When the data set is ready
to transmit, bit 2, clear to send, of status byte 2 will be set to a
one. At this time, the transmitter will send the byte previously
loaded. If data had not been loaded into the transmitter, the trans-
mitter will send a rub out character if in the asynchronous mode or
a sync character if in the synchronous mode. When the transmitter

is ready to accept a byte from the processor, bit 7, transmitter

ready, of status byte 2 will be set to a one. If a byte of data is

not sent to the transmitter in time, a fill character will be sent. This
will be indicated by bit 4, data not available, of status byte 2 set

to a one. To clear the data not available status, execute an OUT 012
with bit 4, reset error flag, in the A-register set to a one. The fill
character will be a rub out when in the asynchronous mode and a
sync character in the synchronous mode.

Instruction Set

(Alphabetic Order)

Code Mnem

Length Time

87
80
81
82
83
84
85
86
8F
88
89
8A
8B
8C
8D
8E
CE
C6
BF
B8
B9
BA
BB
BC
BD
BE
FE
CD
DC
ED
FC
D4

Note: Timing is in microseconds.

AA
A,B
A,C
AD
AE
AH
AL
AM
AC,A
AC,B
AC,C
AC,D
AC,E
AC,H
AC,L
AC,M
ACI
Al
CA
C,B
C.C
C.D
C,E
CH
C,.L
C,M
Cl

CL
CcLC
CLE
CLM
CLNC

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
1
1
1
1
1
1
1
1
2
3
3
3
3
3

WNNNNNDNN

7}

WWNNNNDNNN
oo

8.5

5.5/9
5.5/9
5.5/9
5.5/9

— 63 —

Code Mnem Length Time
E4 CLNE 3 5.5/9
F4 CLNM 3 5.5/9
C4 CLNZ 3 5.5/9
CC cCLz 3 5.5/9
2F CMA 1 2
3F CMC 1 2
27 DAA 1 2
09 " DAD,B 1 5
19 DAD,D 1 5
29 DAD,H 1 5
39 DAD,SP 1 5
0B DCD,B 1 2.5
1B DCD,D 1 2.5
2B DCDH 1 2.5
3B DCD,SP 1 2.5
3D DECA 1 2.5
05 DEC,B 1 2.5
0D DEC,C 1 2.5
15 DEC,D 1 2.5
1D DEC,E 1 2.5
25 DECH 1 2.5
2D DEC,L 1 2.5
35 DECM 1 5
F3 DIS 1 2
FB ENB 1 2
DB IN 2 5
3C INC,A 1 25
04 INC,B 1 2.5
0C INC,C 1 2.5
14 INC,D 1 2.5
1C INC,E 1 2.5
24 INC,H 1 2.5

— 64 —

Code Mnem Length Time Code Mnem Length Time
2C INC,L 1 2.5 OE LI,C 2 3.5
34 INC,M 1 5 16 LI,D 2 3.5
03 IND,B 1 2.5 1€ LLE 2 3.5
13 IND,D 1 2.5 26 LILH 2 3.5
23 IND,H 1 2.5 2B LI,L 2 3.5
33 IND,SP 1 2.5 7F LR,AA 1 2.5
c3 J 3 5 78 LR,AB 1 2.5
DA JC 3 5 79 LRAC 1 2.5
EA JE 3 5 7A LR,AD 1 2.5
FA JM 3 5 7B LR,AE 1 2.5
D2 JNC 3 5 7C LR,AH 1 2.5
E2 UNE 3 5 7D LR,A,L 1 2.5
F2 JNM 3 5 47 LR,B,A 1 2.5
C2 UNZ 3 5 40 LR,B,B 1 2.5
CA Jz 3 5 41 LR,B,C 1 2.5
7E LA 1 3.5 42 LR,B,D 1 2.5
46 L,B 1 3.5 43 LR,B,E 1 2.5
4E L,C 1 3.5 44 LR,B,H 1 2.5
56 L,D 1 3.5 45 LR,B,L 1 2.5
56 L,E 1 3.5 4F LR,CA 1 2.5
66 L,H 1 3.5 48 LR,C,B 1 2.5
6E L,L 1 3.5 49 LR,C.C 1 2.5
01 LADR,B,C 3 8 4A LR,C,D 1 2.5
11 LADR,D,E 3 8 4B LR,C,E 1 2.5
21 LADR,H,L 3 8 4C LR,CH 1 2.5
31 "LADR,SP 3 8 4D LR,C,L 1 2.5
3A LDA 3 6.5 57 LR,D,A 1 2.5
0A LDAMB 1 3.5 50 LR,D,B 1 2.5
1A LDAM,D 1 3.5 51 LR,D,C 1 2.5
2A LHL 3 8.5 52 LR,D,D 1 2.5
3E LILA 2 3.5 53 LR,D,E 1 2.5
06 LI,B 2 3.5 54 LR,D,H 1 2.5

*All other LADR instructions are the combination of two LI
-instructions.

Code Mnem Length Time

55
5F
58
59
5A
5B
5C
5D
67
60
61

62
63
64
65
6F
68
69
6A
6B
6C
6D
A7
AO
Al
A2
A3
A4
A5
A6
E6
00

LR,D,L
LR,E,A
LR,E.B
LR,E,C
LR,E,D
LR,E,E
LR,E,H
LR,E,L
LR,H.A
LR,H,B
LR,H,C
LR,H,D
LR.H,E
LR,H.H
LR,H,L
LR,L A
LR,L,B
LR,L,C
LR,L,D
LR,L.E
LR,LH
LR,L,L
N,A
N,B
N,C
N,D
N,E
N,H
N,L
N,M

NI
NOP

SN = = s a0 @ e 8 e e 3 e a3 a3 ed e e e o3 e e e e e e e

2.5
2.5
2.5
2.5
2.5
2.5
25
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5

N

NWWNNNRNNN
o ;o

—~65 —

Code Mnem Length Time

B7
BO
B1

B2
B3
B4
B5
B6
F6
D3
E9
F1

C1

D1
E1

F5
Cb
D5
E5
C9
D8
E8
F8
DO
EO
FO
Cco
C8
97

90

91

92

O,A
0,B
0,.C
0,D
O,E
O,H

Oo,L
oM

Ol

ouT
PCHL
POP,A
POP,B
POP,D
POP,H
PUSH,A
PUSH,B
PUSH,D
PUSH,H
R

RC

RE

RM
RNC
RNE
RNM
RNZ
RZ

S,A

S,B

S,C

S,D

S m o W W W W W W WL S = s e e N R = e e e e e e

N

QOO NOWWNNNNNN
o o o

oo oo
(S22 BNz RNé) |

2.5/5.5
2.5/56.5
2.5/5.5
2.5/5.5
2.5/5.5
2.5/5.5
2.5/5.5
2.5/5.5

N NN

— 66 —

Code Mnem Length Time Code Mnem Length Time
93 S,E 1 2 76 STOP 1 0.5
94 SH 1 2 E3 SWAP 1 9
95 S,L 1 2 AF X,A 1 2
96 SM 1 3.5 A8 X,B 1 2
9F SB,A 1 2 A9 X,C 1 2
98 SB,B 1 2 AA X,D 1 2
99 SB,C 1 2 AB X,E 1 2
9A SB,D 1 2 AC X,H 1 2
98 SB,E 1 2 AD X,L 1 2
9C SB,H 1 2 AE XM 1 3.6
9D SB,L 1 2 EB XCH 1 2
9E SB.M 1 3.5 EE Xl 2 3.5
DE SBI 2 3.5 :
D6 SI 2 3.5
17 SL 1 2
07 SLC 1 2
F9 SPHL 1 2.5
1F SR 1 2
OF SRC 1 2
77 ST,A 1 3.5
70 ST,B 1 3.5
71 ST,C 1 3.5
72 ST,D 1 3.5
73 ST,E 1 3.5
74 STH 1 3.5
75 ST,L 1 3.5
32 STA 3 6.5
02 STAMB 1 3.5
12 STAM,D 1 3.5
37 STC 1 2
22 STHL 3 8.5

2

36 STI

o

(Numeric Order)

Code Mnem Length Time

00
01

02
03
04
05
06
07
09
0A
0B
oc
oD
OE
OF
11

12
13
14
15
16
17

19
1A
1B
1C
1D
1E
1F
21

22
23

NOP
LADR,B,C
STAM,B
IND,B
INC,B
DEC,B
LI,B
SLC
DAD,B
LDAM,B
DCD,B
INC,C
DEC,C
LI,C
SRC
LADR,D,E
STAM,D
IND,D
INC,D
DEC,D
LI,D

SL
DAD,D
LDAM,D
DCD,D
INC,E
DEC,E
LI,E

SR
LADR,H,L
STHL
IND,H

S WW=E N = = m @ N) = 2 W)= N = e 3 e e N) = e) =

2
8
3.5
2.5
2.5
2.5
3.5
2
5
3.5
2.5
2.5
2.5
3.5
2
8
3.5
2.5
2.5
2.5
3.6
2
5
3.5
2.5
2.5
2.5
3.5
2
8
8.5
2.5

—67 —

Code Mnem Length Time

24
25
26
27

29
2A
2B
2C
2D
2E
2F
31

32
33
34
35
36
37

39
3A
3B
3C
3D
3E
3F
40
41

42
43
44
45
46

INC,H
DEC,H
LILH
DAA
DAD,H
LHL
DCD,H
INC,L
DEC,L
LI, L
CMA
LADR,SP
STA

"~ IND,SP

INC,M
DEC,M
STI

STC
DAD,SP
LDA
DCD,SP
INC,A
DEC,A
LILA
cmC
LR,B,B
LR,B,C
LR,B.D
LR,B,E
LR,B,H
LR,B,L
L.B

B e a m Em A A N e B WS R NS WL = N = e) N

2.5
2.5
3.5
2

5

8.6
2.5
2.5
2.5
3.5
2

8

6.5
2.5

— 68 —

Code Mnem Length Time

47
48
49
4A
4B
4C
4D
4E
4F
50
51

52
53
54
55
56
57
58
59
5A
5B
5C
5D
5E
5F
60
61

62
63
64
65
66

LR,B,A
LR,C,B
LR,C,C
LR,C,D
LR,C.E
LR,C,H
LR.C,L
L.C

LR,C,A
LR,D,B
LR,D,C
LR,D,D
LR,D,C
LR,D.H
LR,D,L
L.D

LR,D,A
LR,E,B
LR,E,C
LR,E.D
LR,E.E
LR,E,H
LR,E,L
L.E

LR,E,A
LR,H,B
LR,H,C
LR,H.D
LR,H.E
LR,H,H
LR.H,L
LH

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

2.5
2.5
2.5
2.5
2.5
2.5
2.5
3.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
3.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
3.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
3.5

Code Mnem Length Time

67

68
69
6A
6B
6C
6D
6E
6F
70
71

72
73
74
75
76
77
78
79
7A
7B
7C
7D
7E
7F
80
81

82
83
84
85
86

LR,H.A
LR,L,B
LR,L,C
LR,L,D
LR,L,E
LR,L,H
LR,L,L
L.L
LR,LA
ST,B
ST,C
ST,D
ST,E
ST,H
ST,L
STOP
ST,A
LR,A.B
LR,AC
LR,A,D
LR,AE
LR,AH
LR,A,L
LA
LR,AA
AB
AC
AD
AE
AH
AL
AM

_ e S A e e e e e) e e e) o3) el e e e e e

2.5
2.5
2.5
2.5
2.5
2.5
2.5
3.5
2.5
3.5
3.5
3.6
3.5
3.5
3.5
0.5
3.5
2.5
2.5
2.5
2.5
2.5
2.5
3.5
2.5

WNNNNNN

— 69 —

Code Mnem Length Time Code Mnem Length Time
87 AA 1 2 A7 NA 1 2
88 ACB 1 2 A8 X,B 1 2
89 ACC 1 2 A9 X,.C 1 2
8A AC,D 1 2 AA X,D 1 2
8B AC,E 1 2 AB X,E 1 2
8C ACH 1 2 AC X,H 1 2
8D AC,L 1 2 AD X,L 1 2
8E ACM 1 3.5 AE XM 1 3.5
8F ACA 1 2 AF XA 1 2
90 S,B 1 2 BO OB 1 2
91 ScC 1 2 B1 O,C 1 2
92 S,D 1 2 B2 OD 1 2
93 S,E 1 2 B3 - O,E 1 2
94 SH 1 2 B4 OH 1 2
95 S,L 1 2 B5 O,C 1 2
96 SM 1 3.5 B6 OM 1 3.5
97 SA 1 2 B7 OA 1 2
98 SB,B 1 2 B8 C,B 1 2
99 SB,C 1 2 B9 C.C 1 2
9A SB,D 1 2 BA CD 1 2
9B SB,E 1 2 BB C,E 1 2
9C SB,H 1 2 BC CH 1 2
9D SB,L 1 2 BD C,L 1 2
9E SBM 1 3.5 BE CM 1 3.5
9F SBA 1 2 BF CA 1 2
A0 N,B 1 2 CO RNZ 3 2.5/5.5
A1l N, 1 2 C1 POPB 1 5
A2 N,D 1 2 C2 UJNZ 3 5
A3 N,E 1 2 c3 J 3 5
A4 NH 1 2 C4 CLNz 3 5.5/9
A5 N,L 1 2 C5 PUSHB 1 5.5
A6 N,M 1 3.5 Cé6 Al 2 3.5

—~ 70 —

Code Mnem Length Time

C8
C9
CA
cC
CD
CE
DO
D1
D2
D3
D4
D5
D6
D8
DA
DB
DC
DE
EO
E1
E2
E3
E4
E5
E6
E8
E9
EA
EB
ED
EE
FO

RZ

R

JZ
CcLz
CL
ACI
RNC
POP,D
JNC
ouT
CLNC
PUSH,D
Sl

RC

JC

IN
CLC
SBI
RNE
POP.H
JNE
SWAP
CLNE
PUSH,H
NI

RE
PCHL
JE
XCH
CLE
Xl
RNM

wmoo—noo—‘ww—-w—-w—-wmwmwww—»wmwaw—‘www-ﬂm

2.5/5.5
5

5

5.5/9
8.5

3.5
2.5/5.5
5

5

5

5.5/9
5.5

3.5
2.5/5.5

5.5/9
3.5
2.5/5.5

5.5/9
5.5

35
2.5/5.5
2.5

5.5/9
3.6
2.5/5.5

Code Mnem Length Time

F1

F2
F3

F4
F5
F6
F8
F9
FA
FB
FC
FE

POP,A
JNM
DIS
CLNM
PUSH,A
Ol

RM
SPHL
JM
ENB
CLM
Cl

1
3
1
3
1
2
3
1
3
1
3
2

‘

5

5

2

5.5/9 -
5.5

3.5
2.5/5.5
2.5

5

2

5.5/9
3.5

